5,383 research outputs found

    APFELgrid: a high performance tool for parton density determinations

    Full text link
    We present a new software package designed to reduce the computational burden of hadron collider measurements in Parton Distribution Function (PDF) fits. The APFELgrid package converts interpolated weight tables provided by APPLgrid files into a more efficient format for PDF fitting by the combination with PDF and αs\alpha_s evolution factors provided by APFEL. This combination significantly reduces the number of operations required to perform the calculation of hadronic observables in PDF fits and simplifies the structure of the calculation into a readily optimised scalar product. We demonstrate that our technique can lead to a substantial speed improvement when compared to existing methods without any reduction in numerical accuracy.Comment: 13 pages, 2 figures. Submitted to CPC. Code available from https://github.com/nhartland/APFELgri

    Longer aftershocks duration in extensional tectonic settings

    Get PDF
    Aftershocks number decay through time, depending on several parameters peculiar to each seismogenic regions, including mainshock magnitude, crustal rheology, and stress changes along the fault. However, the exact role of these parameters in controlling the duration of the aftershock sequence is still unknown. Here, using two methodologies, we show that the tectonic setting primarily controls the duration of aftershocks. On average and for a given mainshock magnitude (1) aftershock sequences are longer and (2) the number of earthquakes is greater in extensional tectonic settings than in contractional ones. We interpret this difference as related to the different type of energy dissipated during earthquakes. In detail, (1) a joint effect of gravitational forces and pure elastic stress release governs extensional earthquakes, whereas (2) pure elastic stress release controls contractional earthquakes. Accordingly, normal faults operate in favour of gravity, preserving inertia for a longer period and seismicity lasts until gravitational equilibrium is reached. Vice versa, thrusts act against gravity, exhaust their inertia faster and the elastic energy dissipation is buffered by the gravitational force. Hence, for seismic sequences of comparable magnitude and rheological parameters, aftershocks last longer in extensional settings because gravity favours the collapse of the hangingwall volumes

    Frequency conversion of structured light

    Get PDF
    We demonstrate the coherent frequency conversion of structured light, optical beams in which the phase varies in each point of the transverse plane, from the near infrared (803nm) to the visible (527nm). The frequency conversion process makes use of sum-frequency generation in a periodically poled lithium niobate (ppLN) crystal with the help of a 1540-nm Gaussian pump beam. We perform far-field intensity measurements of the frequency-converted field, and verify the sought-after transformation of the characteristic intensity and phase profiles for various input modes. The coherence of the frequency-conversion process is confirmed using a mode-projection technique with a phase mask and a single-mode fiber. The presented results could be of great relevance to novel applications in high-resolution microscopy and quantum information processing

    Accurate Modeling of Weak Lensing with the sGL Method

    Full text link
    We revise and extend the stochastic approach to cumulative weak lensing (hereafter the sGL method) first introduced in Ref. [1]. Here we include a realistic halo mass function and density profiles to model the distribution of mass between and within galaxies, galaxy groups and galaxy clusters. We also introduce a modeling of the filamentary large-scale structures and a method to embed halos into these structures. We show that the sGL method naturally reproduces the weak lensing results for the Millennium Simulation. The strength of the sGL method is that a numerical code based on it can compute the lensing probability distribution function for a given inhomogeneous model universe in a few seconds. This makes it a useful tool to study how lensing depends on cosmological parameters and its impact on observations. The method can also be used to simulate the effect of a wide array of systematic biases on the observable PDF. As an example we show how simple selection effects may reduce the variance of observed PDF, which could possibly mask opposite effects from very large scale structures. We also show how a JDEM-like survey could constrain the lensing PDF relative to a given cosmological model. The updated turboGL code is available at turboGL.org.Comment: PRD style: 20 pages, 10 figures; replaced to match the improved version accepted for publication in PRD. The updated turboGL code can be downloaded at http://www.turbogl.org

    Quantum Dynamics of the Taub Universe in a Generalized Uncertainty Principle framework

    Full text link
    The implications of a Generalized Uncertainty Principle on the Taub cosmological model are investigated. The model is studied in the ADM reduction of the dynamics and therefore a time variable is ruled out. Such a variable is quantized in a canonical way and the only physical degree of freedom of the system (related to the Universe anisotropy) is quantized by means of a modified Heisenberg algebra. The analysis is performed at both classical and quantum level. In particular, at quantum level, the motion of wave packets is investigated. The two main results obtained are as follows. i) The classical singularity is probabilistically suppressed. The Universe exhibits a stationary behavior and the probability amplitude is peaked in a determinate region. ii) The GUP wave packets provide the right behavior in the establishment of a quasi-isotropic configuration for the Universe.Comment: 10 pages, 4 figures; v2: section added, to appear on PR

    A determination of the fragmentation functions of pions, kaons, and protons with faithful uncertainties

    Get PDF
    We present NNFF1.0, a new determination of the fragmentation functions (FFs) of charged pions, charged kaons, and protons/antiprotons from an analysis of single-inclusive hadron production data in electron-positron annihilation. This determination, performed at leading, next-to-leading, and next-to-next-to-leading order in perturbative QCD, is based on the NNPDF methodology, a fitting framework designed to provide a statistically sound representation of FF uncertainties and to minimise any procedural bias. We discuss novel aspects of the methodology used in this analysis, namely an optimised parametrisation of FFs and a more efficient χ2\chi^2 minimisation strategy, and validate the FF fitting procedure by means of closure tests. We then present the NNFF1.0 sets, and discuss their fit quality, their perturbative convergence, and their stability upon variations of the kinematic cuts and the fitted dataset. We find that the systematic inclusion of higher-order QCD corrections significantly improves the description of the data, especially in the small-zz region. We compare the NNFF1.0 sets to other recent sets of FFs, finding in general a reasonable agreement, but also important differences. Together with existing sets of unpolarised and polarised parton distribution functions (PDFs), FFs and PDFs are now available from a common fitting framework for the first time.Comment: 50 pages, 22 figures, 5 table

    Groups associated to II1II_1-factors

    Get PDF
    We extend recent work of the first named author, constructing a natural Hom semigroup associated to any pair of II1_1-factors. This semigroup always satisfies cancelation, hence embeds into its Grothendieck group. When the target is an ultraproduct of a McDuff factor (e.g., RωR^\omega), this Grothendieck group turns out to carry a natural vector space structure; in fact, it is a Banach space with natural actions of outer automorphism groups
    • …
    corecore